614 Chapter 14.  Statistical Description of Data

14.3 Are Two Distributions Different?

Given two sets of data, we can generalize the questions asked in the previous
section and ask the single question: Are the two sets drawn from the same distribution
function, or from different distribution functions? Equivalently, in proper statistical
language, “Can we disprove, to a certain required level of significance, the null5
hypothesis that two data sets are drawn from the same population distributio
function?” Disproving the null hypothesis in effect proves that the data sets are from
different distributions. Failing to disprove the null hypothesis, on the other hand,
only shows that the data sets candoesistent with a single distribution function.
One can neveprove that two data sets come from a single distribution, since (e.g.)
no practical amount of data can distinguish between two distributions which differ -
only by one part in10'°.

Proving that two distributions are different, or showing that they are consistent,
is a task that comes up all the time in many areas of research: Are the visible stars
distributed uniformly in the sky? (That is, is the distribution of stars as a function
of declination — position in the sky — the same as the distribution of sky area as
a function of declination?) Are educational patterns the same in Brooklyn as in the
Bronx? (That is, are the distributions of people as a function of last-grade-attende
the same?) Do two brands of fluorescent lights have the same distribution o
burn-outtimes? Is the incidence of chicken pox the same for first-born, second-born
third-born children, etc.?

These four examples illustrate the four combinations arising from two different
dichotomies: (1) The data are either continuous or binned. (2) Either we wish to
compare one data set to a known distribution, or we wish to compare two equallyz. |
unknown data sets. The data sets on fluorescent lights and on stars are continuo
since we can be given lists of individual burnout times or of stellar positions. The
data sets on chicken pox and educational level are binned, since we are give
tables of numbers of events in discrete categories: first-born, second-born, etc.;
6th Grade, 7th Grade, etc. Stars and chicken pox, on the other hand, share t
property that the null hypothesis is a known distribution (distribution of area in the
sky, or incidence of chicken pox in the general population). Fluorescent lights and2.
educational level involve the comparison of two equally unknown data sets (the two:
brands, or Brooklyn and the Bronx).

One can always turn continuous data into binned data, by grouping the event
into specified ranges of the continuous variable(s): declinations between 0 and 1
degrees, 10 and 20, 20 and 30, etc. Binning involves a loss of information, however.
Also, there is often considerable arbitrariness as to how the bins should be choserf
Along with many other investigators, we prefer to avoid unnecessary binning of data.

The accepted test for differences between binned distributions chittsguare
test. For continuous data as a function of a single variable, the most generally’
accepted test is th€olmogorov-Smirnov test. We consider each in turn.
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Chi-Square Test

Suppose thadV; is the number of events observed in titte bin, and that: ; is
the number expected according to some known distribution. Note tha¥ tlseare
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14.3 Are Two Distributions Different? 615

integers, while thex;’s may not be. Then the chi-square statistic is

=Y (M = ne)? (14.3.1

i i
where the sum is over all bins. A large valuexdf indicates that the null hypothesis
(thattheN;'s are drawn from the population represented byithis) is rather unlikely.
Any termj in (14.3.1) with0 = n; = N; should be omitted from the sum. A
term withn; = 0, N; # 0 gives an infinitex?, as it should, since in this case the
N;'s cannot possibly be drawn from the;’s!
Thechi-square probability function Q (x 2|v) is an incomplete gamma function,
and was already discussed§id.2 (see equation 6.2.18). Strictly speak@gy 2|v)
is the probability that the sum of the squares.-aindomnormal variables of unit
variance (and zero mean) will be greater thah The terms in the sum (14.3.1)
are not individually normal. However, if either the number of bins is largel(),
or the number of events in each bin is large (), then the chi-square probability
function is a good approximation to the distribution of (14.3.1) in the case of the null
hypothesis. Its use to estimate the significance of the chi-square test is standard.
The appropriate value af, the number of degrees of freedom, bears some
additional discussion. If the data are collected with the medé&l fixed — that
is, not later renormalized to fit the total observed number of evenis — thenv
equals the number of bin§ 5. (Note that this isnot the total number oévents!)
Much more commonly, the;’s are normalized after the fact so that their sum equals
the sum of theV;’s. In this case the correct value foris Nz — 1, and the model
is said to have one constrairkinfstrn=1 in the program below). If the model that
gives then,’s has additional free parameters that were adjusted after the fact to agre
with the data, then each of these additional “fitted” parameters decreasesl
increaseknstrn) by one additional unit.
We have, then, the following program:

SUBROUTINE chsone(bins,ebins,nbins,knstrn,df,chsq,prob)

INTEGER knstrn,nbins

REAL chsq,df,prob,bins(nbins),ebins(nbins)

USES ganmg
Given the array bins(1:nbins) containing the observed numbers of events, and an array
ebins(1:nbins) containing the expected numbers of events, and given the number of
constraints knstrn (normally one), this routine returns (trivially) the number of degrees of
freedom df, and (nontrivially) the chi-square chsq and the significance prob. A small value
of prob indicates a significant difference between the distributions bins and ebins. Note
that bins and ebins are both real arrays, although bins will normally contain integer
values.

INTEGER j

REAL gammq

df=nbins-knstrn

chsqg=0.

do 11 j=1,nbins
if (ebins(j).le.0.)pause ’bad expected number in chsone’
chsq=chsq+(bins(j)-ebins(j))**2/ebins(j)

enddo 11

prob=gammq (0.5%*df,0.5%chsq) Chi-square probability function. See §6.2.

return

END
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616 Chapter 14.  Statistical Description of Data

Next we consider the case of comparimg binned data sets. L&t; be the
number of events in bin for the first data setS; the number of events in the same
bin i for the second data set. Then the chi-square statistic is

) (Ri — 5:)°
=y ok 14.3,
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Comparing (14.3.2) to (14.3.1), you should note that the denominator of (14.3.2) is
not just the average oR?; and.S; (which would be an estimator of; in 14.3.1).
Rather, it is twice the average, the sum. The reason is that each term in a chi-squa
sum is supposed to approximate the square of a normally distributed quantity with
unit variance. The variance of the difference of two normal quantities is the sum
of their individual variances, not the average.

If the data were collected in such a way that the sum offfl's is necessarily
equal to the sum of;’s, then the number of degrees of freedom is equal to one
less than the number of bing/z — 1 (that is,knstrn = 1), the usual case. If
this requirement were absent, then the number of degrees of freedom wahilg be
Example: A birdwatcher wants to know whether the distribution of sighted birds
as a function of species is the same this year as last. Each bin corresponds to o
species. If the birdwatcher takes his data to be the first 1000 birds that he saw i
each year, then the number of degrees of freedaigs— 1. If he takes his data to
be all the birds he saw on a random sample of days, the same days in each year, th
the number of degrees of freedomVs; (knstrn = 0). In this latter case, note that
he is also testing whether the birds were more numerous overall in one year or thé
other: That is the extra degree of freedom. Of course, any additional constraints org
the data set lower the number of degrees of freedom (i.e., inckaasen to more
positive values) in accordance with their number.

The program is
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SUBROUTINE chstwo(binsl,bins2,nbins,knstrn,df,chsq,prob)

INTEGER knstrn,nbins

REAL chsq,df,prob,bins1(nbins) ,bins2(nbins)

USES ganmm
Given the arrays bins1(1:nbins) and bins2(1:nbins), containing two sets of binned
data, and given the number of constraints knstrn (normally 1 or 0), this routine returns
the number of degrees of freedom df, the chi-square chsq, and the significance prob.
A small value of prob indicates a significant difference between the distributions bins1
and bins2. Note that bins1 and bins2 are both real arrays, although they will normally
contain integer values.

INTEGER j

REAL gammq

df=nbins-knstrn

chsqg=0.

do 11 j=1,nbins
if (bins1(j).eq.0..and.bins2(j).eq.0.)then

df=df-1. No data means one less degree of freedom.
else
chsq=chsqg+(bins1(j)-bins2(j))**2/(bins1(j)+bins2(j))

endif

enddo 11

prob=gammq (0.5%*df,0.5%chsq) Chi-square probability function. See §6.2.

return

END
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14.3 Are Two Distributions Different? 617

Equation (14.3.2) and the routiegstwo both apply to the case where the total
number of data points is the same in the two binned sets. For unequal numbers of
data points, the formula analogous to (14.3.2) is

. R+ S; h =

where %
R=Y"R 5=)5 (1434  §

K3 K3 g_)

are the respective numbers of data points. It is straightforward to make thef

corresponding change iehstwo.
Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (0K—S) test is applicable to unbinned distributions
that are functions of a single independent variable, that is, to data sets where ea
data point can be associated with a single number (lifetime of each lightbulb when
it burns out, or declination of each star). In such cases, the list of data points ca
be easily converted to an unbiased estimatgi(z) of the cumulative distribution
function of the probability distribution from which it was drawn: If tAeevents are
located at values;, i = 1,..., N, thenSy(z) is the function giving the fraction
of data points to the left of a given value This function is obviously constant
between consecutive (i.e., sorted into ascending ondes) and jumps by the same
constantl /N at eachz;. (See Figure 14.3.1.)

Different distribution functions, or sets of data, give different cumulative
distribution function estimates by the above procedure. However, all cumulative
distribution functions agree at the smallest allowable value @ivhere they are
zero), and at the largest allowable valuexafwhere they are unity). (The smallest
and largest values might of course-hec.) So it is the behavior between the largest
and smallest values that distinguishes distributions.

One can think of any number of statistics to measure the overall differencegs
between two cumulative distribution functions: the absolute value of the area betweepf;
them, for example. Or their integrated mean square difference. The Kolmogorov-&
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Smirnov D is a particularly simple measure: It is defined as theximum value 2
of the absolute difference between two cumulative distribution functions. Thus, 2
for comparing one data setSy(x) to a known cumulative distribution function >
P(z), the K-S statistic is 2
QD
D= max |Sy(z)— P(z)] (14.3.5
—oo<r <o

while for comparing two different cumulative distribution functiofsy, (z) and
Sn,(x), the K-S statistic is

D= max |Sn,(x)— Sn,(2)] (14.3.6

—oo<r<oo
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618 Chapter 14.  Statistical Description of Data
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Figure 14.3.1. Kolmogorov-Smirnov statistic D. A measured distribution of values in x (shown
as N dots on the lower abscissa) is to be compared with a theoretical distribution whose cumulative
probability distribution is plotted as P(x). A step-function cumulative probability distribution Sy (z) is
constructed, one that rises an equal amount at each measured point. D is the greatest distance between
the two cumulative distributions.

What makes the K-S statistic useful is that its distribution in the case of the null
hypothesis (data sets drawn from the same distribution) can be calculated, at least to
useful approximation, thus giving the significance of any observed nonzero value of
D. A centra feature of the K-S test is that it is invariant under reparametrization
of z; in other words, you can locally dlide or stretch the = axis in Figure 14.3.1,
and the maximum distance D remains unchanged. For example, you will get the
same significance using x as using log x.

The function that enters into the calculation of the significance can be written
as the following sum:

Qrs(A) = 250:(—1)j‘1 e (143.7)
j=1

which is a monotonic function with the limiting values
Qrs(0)=1  Qrs(c0) =0 (14.3.8)

In terms of this function, the significance level of an observed value of D (as
a disproof of the null hypothesis that the distributions are the same) is given
approximately [1] by the formula

Probability (D > observed ) = Qs [V/Ne +0.12+0.11/y/N| D)
(14.3.9)
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14.3 Are Two Distributions Different? 619

where N, is the effective number of data points, N, = N for the case (14.3.5)
of one distribution, and

N1 Ny

A
N+ Ny

(14.3.10)

for the case (14.3.6) of two distributions, where NV, is the number of data pointsin
the first distribution, N, the number in the second.

The nature of the approximation involved in (14.3.9) is that it becomes asymp-
totically accurate as the N, becomes large, but is already quite good for N, > 4, as
small a number as one might ever actually use. (See[1].)

So, we have the following routines for the cases of one and two distributions:

SUBROUTINE ksone(data,n,func,d,prob)

INTEGER n

REAL d,data(n),func,prob

EXTERNAL func

USES probks, sort
Given an array data(1:n), and given a user-supplied function of a single variable func
which is a cumulative distribution function ranging from 0 (for smallest values of its argu-
ment) to 1 (for largest values of its argument), this routine returns the K-S statistic d, and
the significance level prob. Small values of prob show that the cumulative distribution
function of data is significantly different from func. The array data is modified by being
sorted into ascending order.

INTEGER j

REAL dt,en,ff,fn,fo,probks

call sort(n,data) If the data are already sorted into ascending or-

en=n der, then this call can be omitted.

d=0.

fo=0. Data's c.d.f. before the next step.

do1 j=1,n Loop over the sorted data points.
fn=j/en Data’s c.d.f. after this step.
ff=func(data(j)) Compare to the user-supplied function.
dt=max(abs (fo-ff),abs(fn-ff)) Maximum distance.
if(dt.gt.d)d=dt
fo=fn

enddo 11

en=sqrt (en)

prob=probks ((en+0.12+0.11/en)*d) Compute significance.

return

END

SUBROUTINE kstwo(datal,nl,data2,n2,d,prob)

INTEGER n1,n2

REAL d,prob,datal(nl),data2(n2)

USES probks, sort
Given an array datal(1:n1), and an array data2(1:n2), this routine returns the K-
S statistic d, and the significance level prob for the null hypothesis that the data sets
are drawn from the same distribution. Small values of prob show that the cumulative
distribution function of datal is significantly different from that of data2. The arrays
datal and data2 are modified by being sorted into ascending order.

INTEGER j1,j2

REAL di1,d2,dt,enl,en2,en,fnl,fn2,probks

call sort(nil,datal)

call sort(n2,data2)

enl=nl

en2=n2

ji=1 Next value of datal to be processed.

j2=1 Ditto, data2.
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620 Chapter 14.  Statistical Description of Data

fn1=0.
fn2=0.
d=0.
if(jl.le.nl.and.j2.le.n2)then If we are not done...
di=datal(j1)
d2=data2(j2)
if(dl.le.d2)then Next step is in datal.
fnl=j1/enl
jl=ji+1
endif
if(d2.1le.d1)then Next step is in data2.
fn2=j2/en2
j2=j2+1
endif
dt=abs (fn2-fn1)
if (dt.gt.d)d=dt
goto 1
endif
en=sqrt (enl*en2/(enl+en2))
prob=probks ((en+0.12+0.11/en) *d) Compute significance.
return
END

Both of the above routines use the following routine for calcul ating the function

Qks:

FUNCTION probks(alam)
REAL probks,alam,EPS1,EPS2
PARAMETER (EPS1=0.001, EPS2=1.e-8)
Kolmogorov-Smirnov probability function.
INTEGER j
REAL a2,fac,term,termbf
a2=-2.*alam**2
fac=2.
probks=0.
termbf=0. Previous term in sum.
dou j=1,100
term=fac*exp (a2*j**2)
probks=probks+term
if (abs(term) .le.EPS1*termbf.or.abs(term).le.EPS2*probks)return

fac=-fac Alternating signs in sum.
termbf=abs (term)
enddo 11
probks=1. Get here only by failing to converge.
return
END

Variants on the K-S Test

The sensitivity of the K-S test to deviations from a cumulative distribution function
P(x) is not independent of z. In fact, the K-S test tends to be most sensitive around the
median value, where P(x) = 0.5, and less sensitive at the extreme ends of the distribution,
where P(z) isnear 0 or 1. Thereason isthat the difference |Sn () — P(z)| does not, in the
null hypothesis, have a probability distribution that isindependent of z. Rather, itsvarianceis
proportional to P(z)[1 — P(z)], whichislargest at P = 0.5. Sincethe K-S statistic (14.3.5)
isthe maximum difference over all x of two cumulative distribution functions, adeviation that
might be statistically significant at its own value of = gets compared to the expected chance
deviation at P = 0.5, and is thus discounted. A result is that, while the K-S test is good at
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14.3 Are Two Distributions Different? 621

finding shifts in a probability distribution, especially changes in the median value, it is not
always so good at finding spreads, which more affect the tails of the probability distribution,
and which may leave the median unchanged.

One way of increasing the power of the K-S statistic out on the tails is to replace
D (equation 14.3.5) by a so-called stabilized or weighted statistic[2-4], for example the
Anderson-Darling statistic,

L ISx@) =P
—oo<w<oe \/P(z)[1 — P(z)]

Unfortunately, there is no simple formula anal ogous to equations (14.3.7) and (14.3.9) for this
statistic, although Noé [5] gives acomputational method using arecursion relation and provides
agraph of numerical results. There are many other possible similar statistics, for example

b= /P:O Pl = P@)] F@ (143.12)

which is also discussed by Anderson and Darling (see[3]).

Anather approach, which we prefer as simpler and more direct, is due to Kuiper[6,7].
We already mentioned that the standard K-S test is invariant under reparametrizations of the
variable z. An even more general symmetry, which guarantees equal sensitivities at all values
of z, istowrap the z axis around into a circle (identifying the points at +00), and to look for
adtatistic that is now invariant under all shifts and parametrizations on the circle. Thisallows,
for example, a probability distribution to be “cut” at some central value of z, and the left and
right halves to be interchanged, without altering the statistic or its significance.

Kuiper's statistic, defined as

V=Dy+D_= max [Sy(z)—P(z)]+ max [P(z)— Sn(z)] (14.3.13)

—oo<z<oo —oco<z<oo

D* = (14.3.11)

is the sum of the maximum distance of Sy (x) above and below P(z). You should be able
to convince yourself that this statistic has the desired invariance on the circle: Sketch the
indefinite integral of two probability distributions defined on the circle as a function of angle
around the circle, as the angle goes through several times 360°. If you change the starting
point of the integration, D4 and D_ change individually, but their sum is constant.

Furthermore, there is a simple formulafor the asymptotic distribution of the statistic V,
directly analogous to equations (14.3.7)—«14.3.10). Let

Qrr(X Z 45°0% — 1)e 27N (14.3.14)

which is monotonic and satisfies
QKP(O) =1 QKP(OO) =0 (14.3.15)
In terms of this function the significance level is[1]

Probability (V > observed ) = Qg p ( [\/F +0.155 + 0.24/\/E} v) (14.3.16)

Here N, is N in the one-sample case, or is given by equation (14.3.10) in the case of
two samples.

Of course, Kuiper's test is ideal for any problem originally defined on a circle, for
example, to test whether the distribution in longitude of something agrees with some theory,
or whether two somethings have different distributions in longitude. (See also[8].)

We will leave to you the coding of routines analogous to ksone, kstwo, and probks,
above. (For A < 0.4, don't try to do the sum 14.3.14. Itsvalueis 1, to 7 figures, but the series
can require many terms to converge, and loses accuracy to roundoff.)

Two final cautionary notes: First, we should mention that all varieties of K-S test lack
the ability to discriminate some kinds of distributions. A simple example is a probability
distribution with a narrow “notch” within which the probability falls to zero. Such a
distribution is of course ruled out by the existence of even one data point within the notch,
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but, because of its cumulative nature, a K-S test would require many data points in the notch
before signaling a discrepancy.

Second, we should note that, if you estimate any parameters from a data set (e.g., amean
and variance), then the distribution of the K-S statistic D for acumulative distribution function
P(x) that uses the estimated parameters is no longer given by equation (14.3.9). In general,
you will have to determine the new distribution yourself, e.g., by Monte Carlo methods.
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14.4 Contingency Table Analysis of Two
Distributions

In this section, and the next two sections, we deal with measures of association
for two distributions. The situation isthis: Each data point has two or more different
guantitiesassociated with it, and we want to know whether knowledge of one quantity
gives us any demonstrable advantage in predicting the value of another quantity. In
many cases, one variablewill be an “independent” or “control” variable, and another
will be a “dependent” or “measured” variable. Then, we want to know if the latter
variable is in fact dependent on or associated with the former variable. If it is, we
want to have some quantitative measure of the strength of the association. One often
hears this loosely stated as the question of whether two variables are correlated or
uncorrelated, but we will reserve those terms for a particular kind of association
(linear, or at least monotonic), as discussed in §14.5 and §14.6.

Notice that, as in previous sections, the different concepts of significance and
strength appear: The association between two distributions may be very significant
even if that association is weak — if the quantity of datais large enough.

It isuseful to distinguish among somedifferent kinds of variables, with different
categories forming a loose hierarchy.

e Avariableiscalled nominal if itsvaluesarethemembersof someunordered

set. For example, “state of residence” is a nominal variable that (in the
U.S.) takes on one of 50 values; in astrophysics, “type of galaxy” is a
nominal variablewith thethreevalues“spiral,”“ elliptical,” and “irregular.”
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